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-Abstract

‘1’hc du+~n of a spacecraft monitoring system baseci on a Ncyman-1’carson cietcc[im
critc]ion is ~iiscusseci. l:ach l~c)llcatastro}>llic  state of tl]c spacecraft is inciicateci  by the
transmission of a specific signal 10 lhe ~rounci  station. (hlplete failure of the
s})acecraf[ is indicateci by the’ transmission of no signal. ‘J’hc set of signals chosen  to
rcq>rt.’sc]~t  the spacecraft states consists c)f a sroup  of orthogonally spaced (in frequency)
car~ i[’]s each with unknowrl  (ranciom) phase. Recci v(’r St ~LICt  L]] ’(5 cieri vCli from
ll\axill”l Lll]l-]ike]i]~ood considerations arc proposed that provicic sllitablc  perfornlancc
i]~ tllc plcscncc  of frequency uncertainty (due to IIop])lcr) al]ci frequency rate
u]]ccrtainty (ciuc to oscillator ciri(t). Numerical results arc obtaind from a
co]nbination of analysis anti simulation and indicate the trac]mffs among the various
rccciv(’r structures between performance anti illl})lc]llclltatioll  complexity.



‘lhe I.lesign of an Op[imum System  for: Monitoring
the Operational Status of a Spacecraft

1. IIltrociuc[ion
“1’he ciesi~n  of an optimum carrier col~ll]l~lllicati(ll]  syslcm for monitoring the
operational status (state) of an orbiting spacecraft is best handled by applying the
pri]lciplcs of ll]axi~~~~ll~~-like’lil~ <~(>d Clc’tcction  used in hypothesis testing problems. in
pallicular,  each state of the spacecraft, r.g., spacecraft is fine, spacecraft has failed,
s]>acecraf~ needs inlmdiatc  attention, etc., is assi~neci  a hypothesis and basal on an
appropl iatcly ciefinui pmfor]nancc  critcrioll, the receiver should  be designed to
minimizs  the required power- t[)- noise ratio (or energy-to-noise  ratio when fixing
obst:rvation time) nwdd to faitllful]y detect the hypothesis currently in effect.

in a hypothesis testing problem of the type described above, the notion of cosi
is particularly appropriate. ]br examp]e, the cost of an error in deciding that the
spacc~craft  is fine when indcc~d it has failed is ]nuch larger than the cost of an error in
Ciccicii]lg that it needs immediate he]p whm  i]lciecci it might only need help at a
later time. Also, the probabilities associated with thcI hypotheses that represent the
various spacecraft states are, in general, quite une qual, e.g., the probability of
complete spacecraft failure is significantly less than the probability that it might need
some particular form of help,

If a reasonable set of a priori hypothesis probabilities representing the
spacecraft states are availabl(j and if an appropriate cost matrix (the ijth Clemcllt  of
which is the cost associated with an error in cicciding l]ypothesis  }1” when in rc’ality)
Ili is true) call bc assigned, then the best criterion to apply is the so-called t)2ir2i7trlitll

risk or lIm/cs crilcrio}~ wherci]~ one attempts to minimize the risk, i.e., the average
(statistical) cost.

More oftc]~ than not, the a priori hypothmis probabilities are not known to
the Iccciver  ancl if they are, onr can only estimate (approximate) their valum from
reliability stuciics performed on the spacecraft. l;urtl]ermore,  an appropriate cost
matrix might bc difficult to construct anti incicd mifih( tw ~llissic~ll-de~>c]ldellt.
in view of this, a so- called Nqy}?lRH- Pcmm}l criicriot~  is often applied to such
hypothesis testing problems wllercin onc maxinlix,es the /Jrobf7bi/ify  0/ corrfcf
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drlccfio)l for a given /Iroh7bi/i/I/ of fnlse fllnr))l without the need for such a priori
probability or cost informati~~n.  Most applications of this criterion f[)und in the
literature are for the two hypothesis case since there’, the notions of correct detection
and false alarm arc well- dcfind in terms of the sip,nal prmcmt versus sifpl absmt
concept, While it is possible to extend this criterion to more than two hypotheses,
the literature is esscntial]y  devoid of this discussion. ‘1’hc’  primary reason for this is
as follows. While the notion of false alarm can still be lneaningfully  definecl, i.e.,
clccictinc on flr~~y  oj’ fhe other hy]mfhrscs  cormpordirl:  100 sig~~fl~ pr~sf’~~ 1 7~~~~C~~  i~~~e~~

si$}l(~l  is flbsc)ll  (s~mfffmfl is ded), the no[ion of correct ctctection is somewhat
anlbiguous since thwc are now many possible signal present hypotheses to decide
upon;  hence there arc many correct detection probabilities -- one associated with
each of th[’ signal present hypolhmes.

Regarciless of whether a IJaycs or hley]l~al~-1’c’arso]~ critmia is sclcctd, the
op[imuln receiver sirucluw  that results will be inctcpmdml  of the correlation
pro]) crtim of the si~nals which represent the various spacecraft states. (of course,
the perjorlllfl}lcc of the rcccivcr  will indeed depend on the signal correlation
]Jro])crtics a]lcd lllLIs a second considcra[ion  i]] the dcsi~n of an optimum system
(tr:lllslllittcr/r  c’cei\’c’r)  is to cl]oosc that si~na] set which optimizes the systcm
performance J_or fhc  ~ivr)l si twcl urc delen)jitld ~mll i}lc decisim~ crifwin applifd.) On the
othm hancl,  the’ spmific il)l~)let)lc}lintioll  of the optimum receiver  structure ctcpcnds
heavily on the amount of information known about the parameters that
cllaracterizc~  the reccivd signals, e.g., their phase, carrier frequency, etc. l:or
examplc~, if all signal parameters (e. g., carrier phase, frcqumcy,  etc. ) are known, thml
the optimum receiver  takes the form of so~ne type of coherent reccivm which may
or may not include a priori probability and cost information depending  on the
decision criterion adoptd. At the other mtrcme,  in the absence of any specific
knowldgc  about the signal parameters, c.~., the carrier phase is assumed to be
uniformly distributed in the interval (- n,n),  then the optimum rccciver  is a form
of Ilmlcdlcrcrlt  receiver in that no attempt is made to estimate the carrier phase.
l:inally, a compromise between totally known and totally unknown parameter
information, c.~., the carrier phase is characterized by a known probability density
function, yields a form of pflrlinlly- fohnc}ll rcceivcrc

in this paper, we discuss only the design of a spacecraft monitoring system
based on a Neyman-1’carson criterion. We begin with a brief discussion of this
critt’rion as applied to multiple (more than two) hypothesis testing. The resulting
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/1(1); //0
t“(t) ~ .s, (1) i /i(l); /l,, i= 1,2,...,  M-  1

(1)

wl]crc ~j(l) denotes the aciclitivc  channel  ~;aussian  noise with single-sided power
spectral density iV(, w/1 17,, and s,(r), i = ],2,..., A4 - 1 dmotes  the si~na]s assigned to
the ~~[)l]catastl’o~>l]ic  (other than complete failure) spacecraft states. Assuming that
the noise only condition (null hypothesis lf[~) is indeed true then deciding in favor
of .s, (1) -i //(t) (hypothesis }1,, i: 1 , 2 ,.. .,M - 1 ) rcsu]ts in a false alarm. Since all of
these false alarm conditions come about from the same conditional hypothesis
(namely, 110),  it is logical to

A!- 1
I;:h : ~Pr{ll,lllO}

,:]
(larac(erizing r([) in terms
in its Karhuncn-] ,mwe expansion (a special case of which could be the sampling
expansion) and denoting by R,, i = (), 1,. ... M - 1 lhc set of disjoint re~ions in r-space
corresponding to choosing in favor of }1,, i: 1,2,..., M - 1, then (2) can be expressed
a .s

(3)

wllerc p(rl)lO) is the conditional probability density function (pdf) of the vector
observable r given the null hypothesis }lO.

probability of this evmt by

i= 1,2,...,  M- 1 (4)

: 2, whmc there is only one correct detection

Assuming that I/i is indeed true, then deciding in favor of s,(1)+ n([) results
in a corrrct  dccisioll.  We Cimotc the

/;,, =-- l’1”{/ /’1//, } = JR p(rpfl )dr,
1~~ a two-llypothcsis  problem, i.e., M

probability, namely, P,), = l’I’{// ,1//1 }: /’/)/ the Neyman-] ‘(’arson test is derived from
the criterion of maximizing 1’,, subject to a constraint on f~,A. Note hat this is
meaningful and can be achieved inclcpcndmt  of the knowledge  of t}~e a priori
probabilities of }10 and jll. While’ in the M hypothesis problem it is still
]ncallil]gful to constrain falw alarm probability, the presence of a set of M - 1 correct
detection probabilities as in (4) presents many possibilities for the maximiy, ation par[
of the criterion. What OIICI  truly woL~ld like to do in tl~c M -hypothesis case is t(>
]naxin]im  the nzmrfl~e  correct detection probability (m equivalently minimi~,e  the
avmap,c missed detection probability) subject  to a constraint on )j.~. in order to
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(5)

WIICW 2 is a 1 ,a~; range multiplier 10 bc detmminecl. Thus, for a givcm observation
r, wc examine all the values of i for wllicl] p,(r) - Ape(r) > () and tllcm clmose that

value of i, say ix wl]icll yielcls tlw Inr$csl  of tl~csc  positive values of p,(r) -- Ape(r).
‘1’IIcII, r is assigned to tl~e decision rc~ion N,., i.e., based on observation of r, wc

dc’cidc in favor of IIypothesis  }/i.. Si]~cc  tl~c decision regions are disjoint, tl~en for

any particular value of r , tllc’ contribution to tile integra] JR(l)(r)- ho(r))dr comm

only from one of tile terms in tl~c summation on i , name]y  i*. in terms of a
likclil~ood  ratio test, tl~c above can be statcci  as:

,f -Pi(f’) > , p,(r)
A, tl~cn cl~cmsc l~ylmtl~esis }1,. corrmpondillg  to i *  =  Inax- -

pO(r) 1 P(J ( r)
~)(r) <a for all i= 1,2,..,Otllcrwise  (i.e., if –‘ M - 1 ), clloosc tlw llypotllesis  }10.
[).(l’) -

(6)
1]] (6), tl]c notation “ max” f(i)”  mealw “the value of i tl~at maximiz,e.s j’(i)”. “Ihe

i

1 ,aCranSc multiplier A (wllicl] from tl~c above test turns out to be tile decision
tl]res]iold) is cl]osen to satisfy tl~c given constraint on false alarm probability wl~icl~
can be Clctcrmincd from

/:A = I -JR po(r)dr (7)
0

whmc pO(r) is indcpndmt of any of tl]c transmitted signals, Si(t),,. .i == 1,2,..., M - 1.
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(8)
li)r tl]c two-hypotl~esis  case (M : 2), llq. (8) simplifim to

lle~-llypolllcsis

‘cd and presented for a

(lo)



(11)

,,,
where CXA,l,  1s tl]c MI, estimate of ihc’ parame[er vector u. Nc~tc that under no
circ~lmslanccs  is ~(r(f))  ever equal 10 A(r(~))  and except in some very specialized
cascIs  (he’ Al R and the Ml R pl~ilosophies do not result in the same likelihood-ratio
(1 .l~) Iml. one case where tllcy do result in the same 1 X test (as pointed out in [1])
occurs for a signal which is an unmodulated sinusoidal tone (carrier) all of whose
paralnetcrs  arc k~~own except for its phase which is assumed to tw uniformly
ciistributcci in the interval (- 7r, n).

in a more genrra] context, structures derived from replacing tl~c unknown
~>aramcters  ill tile pdf of the received signal under hypothesis }/, conditioned on the
vector of unknown parameters with es(ima fes of them are referred to as csfimafor -
mrrelflfor  structures. ‘1’11(’  reason for this is that the form of these structures
involves a correlation of the received sig,nal plus noise, r(l), with a suitable estimate
of llic transmitted signal followed by comparison with a threshold determined from
the s}mcificcl  false alarm probability. in fact, it was shown a]most three decades ago
by Kailath [2] that receiver structurm derived from an Al ,1< test alwfllys have an
equivalent formulation (Icading to an equivalent likelil~ood  ratio test) in terms of
an estimator  -corrclator  structure provided that fhc fl~~~~m~)riflfe  si~}lfll  Csfillmfor  is
used,? in this context, it was shown that the correct signal estimator to use in the
ml i]nator-corrcl  ator structure is the t~]ini?~~u~ll  t~~cal~-squflre  esf  i}tfnfor (MMSl;) hsd
ml dmrwfiml  of the recci7mi sigrlol 14p to fhc ]vcscllf filllc. Since the MMS1; estimator of
the signal up to [he present time is not equal to t}le signal estimate obtained using
h41, estimates of the signal parameters obtained from the full observation interval, it
is ul~likcly  that the two will yicl~i equival(~nt  likelihood ratio tests. llquivalently,  the
Al ,1< (which is equivalent to the c’stil~~aior-correlatc)r  with the MMSI1 signs
. .



receivers to M hypothesis
test still involves comparison of a

likelihood ratio Ai(r-(z))~  p(r(~)l}f, )/ p(r-(t)l/lO) (which now depends 011 which signal
hypothmis is being consiclcrd)  with a thrc’shold. ‘1’he specific St~LICtLIIC’  of thc!x’
rmeivcrs  clcpmds  on the form of the M-1 signals represmting  the signal plus noise
hypothesm. in line with the signal form assumml in [1], namely, a fixed amplitude
sinusoic] with either unknown phase and kl~c)wn  fw qucmcy or both unknown phase
and unknown frequmcy,  we shall assume for the M-hypothesis case a set of M-1
sinusoids (at frequencies ~C,l,~r ~,. . .,~,,,f. , ) with the same unknown parameters.
‘J’bus, IIle set of signals in (1) is mathematically modeled by

s,([) = J2/’cos(27z~il-l  0),  i  : 1,2,..,, M -  1 (12)
w)~cvx’ }>,~,, respectively clel~otc  tl~c known si~nal  pc)wer a~~d radian carricv
frequency of the ith si~na]  and O denotes the uknown  carrier phase assumecl to be
uniformly distributed in the interval (- 7(,7r). Since the best performance with such
a sigplaling  set is achieved when tllc signals are c qual energy and orfhogonnl,  wc
shall ll~ake this further assumption here. Note, however, that the str~{ct~~rc  of the
optimum Al,]< and Ml ,1< receivers clocs not require this orthogonality  constraint.
Without going into great detail WC briefly summarize here the rmults for the
specific cases treated in [1 ]. ‘1’]1(~ reader is re(~,rr~d  to [ 1 ] for ~l~~r{, detail o~~ the, tw~)-
hypothesis case.

a. sinusoidal  ~;arricrs with lJnknc)wn  1-’1]M(: and KIIown l:rcqumcy - AI.,]<, Ml.,]<

“1’1](’  optimum Al ,1< or Ml ,1< receiver computes for each of the M-1 transmitted
frcqucncim  the el~velope

‘1’he decision rule in both cases is:
If 1:> y for any i, choose hypoll~csis
to lllax 1:. Othcrwisc>  (l; < y for all i

(corri’sponciing  10 no signal sent).

i=]~, ., ..., M-1

//, (or equivalently s,(t)) corresponding
~ 1,2 ,.. .,M -- 1) choose hypothesis 110



(14)

‘1’hc decision rule is:
If ~. > y for any i, clloosc hypothesis /1, (or equivalent] y si (1 )) correspc)nding
10 m~x ~. 0thcn4’ise  (1( < y for all i = 1,2,.,., A4 - 1) choose hypothesis /10

(corrLponding tc) nc) signal smt).
Sil]cc (14) is overly demanding to implement, one discretims  each of the M-1
fmqllency  uncertainly intervals into G = il/’f-’ = I]’f’ subintervals  to each of whicl~  is
dissociated a candidate frequency ~Ci, j, i = 1,2,. ... A4 – 1, ~ =- 0,1, . . ..G --1 located at its
center. Such a Cliscrctiz,  ation  results in orthogonal envelope  detector outputs. As
such, the integration over the continuous uncertainty regions in (14) is
approximate’d by a discrete (Ricmann) SLUN and, hence, the approximate statistic to
be used in the decision rule is

G-l
}; ; . ~ 241’

L[
)

~ ~ ).( fci,j) , i= 1,2,...,  M- 1 (16)
j=o o

A receiver that implements the above decision rule is illustrated in l~ig. 2.

Again assuming disjoint frequency uncertainty regions of 3 };/2 I IZ around each of
the possible transmitted tones, then the’ optimum Ml ,1< rccc’iver computes for eacl”l
of the M-1 transmitted frequencies the quantity
. . .
3Wc further  assume that the  nominal carrier frequencies Of the tOnes arc chosen sufficiently far

apart SO that the frequency unccrtaintly bands arOunci  cac]l arc I~(j]lo\/crla~l]JiIl:,.



(17)

whew f.(f) is defined in (15). ‘1’hc dmisiol] rule is the same as that followins  llq. (15)
and rmulfs in a specfrfll  lllflxil~ll~~~~  form of rcccivcr. Again because of the excessive
dmnand  placed on the illl~>lelllc’lltatioll  by the nmd 10 evaluate (1 7) over a
continuum of frequencies, wc a~ain  quanlim  each of the frqLlc’llcy ~lI~ccrtail~ty
re~ions into G D 117” subinterva]s, each with an associate candidate frequency
J,,, * ;:] ,2,..., M- 1, j=”(),l ,.. .,G - 1 located at its center. As such, the frequency
continuous test statistic of (1 7) can be approximated by the’ discrete form

y = 111({X /,( f,,,, ) (18)

A receiver tl~at  implements the above decision rule is illustrated in l~ig. 3.

3.1.2 ]’c’rformance  of the Al ,1< and h41 ,1< Structures
‘1’hc detection performance c)f the frequency discrete Al 1< receiver in l:ig. 2 cal~not be
obtaillcd in closed form CIUC to its highly complex nonlinear structure. Ilespite its
complexity, 11 OWCVCY, it is important 10 obtain the pcrfor]nancc of this receiver  since
it SC] vcs as a benchmark against which tl~c pcvformance of any other simpler to
imp]clncnt  StILICt  LIM’S (includills  thoSC”  C]c’rived  frolll MI ,1< thCOry)  can bc’ COlllparCd.
‘1’bus, to obtain this performance we sl~al] resort to results obtained from computer
simulations. in construclil~g  thc~ simulation for the signal plus noise hypotheses, a
decision must be made regardin~ the selection of the true received frequency of the
input signal. in making this selection i{ is important to understand that spacing the
frequmcies  ~i,j,j =- (),1,2 ,.. .,G - 1 for each of lllcI signal hypoll~esm /1,, i == 1,2,.. .,h4 --1
by 1 /1’ guarantees indc’pc’ndence  of tlIcI noise components that appc:ar at the output
of c’ach the spectral estimate channels. 1 lowcvcr,  orthogonality  of the signal
colnponmts  of these samc~ outputs clepmds on the true value of the received
frequency relative to the cliscreii~,ed frequencies assumed for illl~31c111clltatic)ll of the
rcccivcr. ‘1’hat  is, if the true rcccivcd  frequency happms  to fall on one of the fci, ‘s,
then a signal component will appear only in the corresponding spectral estimate
channel, i.e., all other channels will contains noise on]y. On the otlmr hand, if the
true received frequency falls somewhere between two of the y,i j’s, then WC have 10ss
of orthogcmality  in that a spillover of signal energy occurs in the ncighbc)ring
spectral c’stimates. l’he worst-case spillover would occur when the true received
frequency is midway bctwccm  two of thr ~,,j’s . (If an 1:171’  illl~)lelllc’lltatioll  is used,
then the worst case degradation can bc ameliorated by zero paclding to interpolate
bc[wccn the frequency samples. ) in view of the above, we shall present both best
case and worst case performance results corresponding, rc’speclivcly,  to selecting the
true received frequency for the simulation identical to O]le of the ~i j’s and midway
bc’tw(m two of the ~i,j’s,
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l~i~urc  4 is a plot of miss probability 1~, = 1- );, versus )’/NO in dl~-1 Iz. for an
observation  timc~ 2’ = 1000 see, a frcqumcy  unccrtainl y region 5 ii/2 = ~ 1000 I lZ

(t]llls ‘; ’  117”  2  x  106)/ a ‘a]se alarll~  ]>ro~’at>i]ity ‘~:* ‘ 2  x  10-4, a~~d M = 5  (fotlr si~llal
pluc noise slates representing  specific spacecraft conditions and one noise only state
rcprcs[’nting spacecraft failure).4 ‘1’hcse values have bcm suggested as being
typical of the spacecraft monitoring application. Also shown in this figure arc the
cc)rrcsponcling results for the h4 1,1< rcceivcr  of l~ig. 3 which can bcI obtained from a
straight forwarci  gmmalization  of the analytical results in [11 10 llIC case’ M >2. WC
observe from a comparison of the Al .1< and h41 X results that tllc latter is inferior 10
the former by a /’/N. amount  ON the order of 1 dl~-1 IZ for either the best or worst
case situation. in each case, the difference bctw’ml  best and worst performance is
abc)ul 2 cllj-1 17,.

3.1.4 j ,OW SN1< Approxi]nation  of the Al ,1< Struclurg
With reference  to llq. (16), wc observe that to implement the optimum Al .1<
str~lclurc clcrivcct from the assumptions of unknown carrier phase and unknown
carrier frequency (uncertainly about the nominal carrier), oIlc must builcl  a receiver
col~tailling G envelope’ detectors and Ilcsse] function nonlil~caritics.  Although
thmretically  possible, the complexity of sLIch a receiver for the spacecraft monitoring
ap}~lication  where the frequency uncertainty interval, B, is on the order of 2 k} IY
and the observation time interval, “f’, is OII  the order of 1000 see, yielding
G z 117’  = 2 x 106 is simply tcm great. As such, wc seek an alternate approach which
combinm this large bank of noncohermt  processors into perhaps a single
nol~col~mmt  procmsor  thus greatly reducing the ill~~>lell~c’l~tatiol~  burdcm.

Onc such approach is obtained by approximating the 10(x) Bessel function by
its small argument equivalent. in particular, for small values of x, we have
lo(x) s 1 + ().25x2. Of course onc could simply make this approximation for the Bessel
functions in the discrete frequmcy  form of the decision statistic as given by (16)
which would suggest the low SNR Al ,1< receiver of l:ig. 5 (also see l~ig. 7-11 of [4]).
While this approach is uscfu] in computing the approximate detection performance
of the receiver (as we shall see shortly), unfortunately it only reduces the complexity
pm channel  (by eliminating the need for the square root and 13 CSSC1  function
nmllil~earities) but does not r(!ducp the complexity in terms of the numbm of
parallel channels ncwded, On the other hand, making the abc)vc Bessel function
approximation in the continuous frequency form of the decision statistic as givcll by
(14) together with (1 .5) results in

4’I’IW+C  param~tcrs  arc typical c)f a spacccta ft mc)niiorinfi  systcm currmtly under  cOnsictcraiiOn by

tlw Jet l’rOpulsiOn 1 .abOratOry  fOr futur(’ deep Spa CC InissiOns,



, ,1, -1’ fcc+[’1~
N2 .lf .,,,, (It(f)+ ll(f))df, i= 1,2,...,  A4- ]() “.,

Substituting for /j(f) and l:(f) from (15) gives

(20)

(21)

l:or 1; >>1 /1’, i.e., lar~c’  117’ product, as is the case c)f interest here, wc can interpret
t)lc illtC~ralS  on T as the output .of a unit amplitude rectangular  low pass filter of
bandwidth H excited by the 1 and Q cimlodulatecl  (at frequency xi) input. Strictly
spc’aking  this interpretation is only valid in the limit as 7’ --> m. IXmoting these
filtered out}>uts  by y,([) and y,(r), wc obtain a simple form for (21), namely,

which has the physical interpretation illustrated in l~ig. 6a. Note’ that this
ill~}>lc’ll~e~~tatiol~  has the aclvantagc~  of replacing for each hypothesis an entire bank
of (; nonmhment  processors with a sill$le square-and-integrate processing. Since
the wiclcbancl  noise at the inputs {o the rectangular filtms in l~ig. 6a can be separated
into an inbancl  component (one W11OSC energy lies in the interval (- );/2,/; /2)) and a
wide out-of -bancl component (one whose energy lies outside of (- /1/2,1J/  2.)), then
for B>> 1 /7’, in so far as the ‘1’-scc  I&l] oLllpLlts are concerned, the product of the
filter outputs and the wide! out-of-band components call bc ignored relative to the
producl of the filter outputs and the i~~band componmts.  As such, another
approximate form of (21 ) is



)’. ~,,-, -1)
1-

N; [J ~: y:(f)dl  -1 1
(1

)’: (1 )(i(
1

(23)

which has 11)(? illl~>l(’lllclltatio]~ of I:i S. Lb. It shoulcl  bc noted that, for any finite ‘~’,
(22) will always yield better pmformanm  than (23); however, in the limit as 7’-> ~
the two bccomc  cquivalcmt. Since both (22) and (23) are a~>~~rc~xilllatiol~s  to the tnm
low SNR Al X statistic, (23) is the preferable onc to uw. 1 ~urthmnorc, as wc shall
soon s(I[’, in so far as cictc’cticm performance is mnccrned, the rectangular filters of
bal~dwicith  l; in IJig. 6b are only consequential in cictcrmining the numbc’r of
indcpenclcnt  samplm (H’ f’)conlainui in the observation time interval. l’hat is, the
performance will not explicitly ciepcmci on B or 7’ inciiviciually but rather on the
prmiuct  G = B’]’.

‘1’hc pmformancc  of the low SNR approximation to the AI .1< illustrated in
l~ig. 5 (which also applies to the illl}>lclllclltatiolls  in l~i~. 6) can bc approximately
colnputmi by applying a Gaussian assumption to the ~’s. in particular, using the
small argument a}>proximation to the 10(x) function in (16), WC have that

(;- I

>[

/’ y 1‘ l - l  -Nj 1. (~i,j) :(;+ z,, i= 1,2,..., M- 1
j= (1 (1

(24)

that the transmitted signal is a sinusoid with random phase and
identically equal to onc of the quantimd  frequencies of (24), then the
variance of X, under signal plus noise hypothesis (Ifi) anti noise only

(25)

l~rom the decision rLlle followins  llq. (15), thc~ false alarm probability is dc’tmmined
from the probability that all M - 1 1(’s are below the threshold y under II. .
llquivalmt]y,  absorbing the constant G in (2.4) into the decision threshold and
noting that the l’.’s are incicp’ndmt  and for large G can be approximated as
Gaussian, thcm };.~ is cictmnined  from



1 -ht-?

.

1

cIfcY dY
2

1

/

G “’

~ {[= Jn” jj}jjfio , ’  <; ,, ~~1’  - >,,i.:;(),.i;](Y- !;:#y}[l.;.crfcY~-2dy,

{[
q:-crfc-l  2 1- (1 -  l;.A)iL

:}
(28a)

l~or G >> 1’1’/  NO and I;,A <<1 (the cases of interest here), (28a) simplifies to

J {(
‘..

‘zvAl}[’-”i”cl’fcyr-’”y1’/, Z-- ;; ,, CxJ’ ‘ y - ‘~2c;
(?(%)

# CI’fC-  1
{M- 1)24

l:urtllwmorc~ for the two hypothesis problon,  i.e., M = 2, (28a) simplifies to

/’/= ~clfcl/2j;7:fio,<  ;(CrfG-1,2~:A~-  !’&)]+ [  ~2~; ]erfc Crfc- 1 (z/:,.A  ) - !~ ‘ ‘0

(29)
IJig. 7 is a plot of miss probability /:, = 1- I:, as dc)termind  from (28) and (29) versus
)’//Vo in dD-I lz for the sanw parameters as in l;ig. 4. ‘1’hc performance CL] rv(!s for the
f~lll-bancl  receiver wcm obtainml numerically from (28a) and the exact form of (29).



3.1.5 -Al ,1< an~i h41 ,1< StrugJlrcs for Sinusoidal C;arricrs lyith LJnkn{)wn  Phase,
l:requc’l~cy, and I:rcqumcy.  l<atc
AssuInc now that in acidi{ion to the uncertainty in phase and frequency of the
transmitted sinusoidal carrier considered in Section 3.1.1, them also mists  an
uncertainty in frcqumcy  rate corresponding to the presc’nce of oscillator drift. If this
cirifl is moclcld as a linear variation in frcqucmcy  over the observation interval, i.e.,
a constant but unknown frequency rate ~lniformly  distributed in the interval ~ l\/2,
tl~el~ following the Al .1< approach, it is stlaigl~tfc)~~va~d  to show that analo~ous  to
(14) the optimum rccciver computes for each of the M-1 lransmittcci frequencies
thc~ quantity

wh(’rc’

L(f>.h = Jf;(f>i) -1 l; U’>1)>

(3(?)

(31 )

‘1’hc decision rule is still thr same as that following llq. (15). Since (30) is even more
ovcr]y demanding to implement than was (14) because of the aciclitional integration
on j, then cmcc again we must resort to discretiz.ation of the frequency and
frequency rate uncertainty intcrva]s resulting in the approximatc~ decision variables

(;. ] /. I

XL [
241’y.! “ “’l,, -

1
L(f,,,, j) > i: 1,2,..., M- 1 (w)

Noj= [) /: O

where II’! /17’2 /2.5 An illustration of an Al ,1< receiver that employs this decision
statistic is illustrated in l:ig. 8.

III the: presence of linear frequency drift, the optimum Ml .1< receiver would
compute for each of the M-1 transmitted frcqucncics  the quantity

y. ~- Inyl.(f’,  f)> ~i --/i/?<  f <~i + f~/2, - /1/2 5f<fi/2, (33)

and then apply the decision rule follow ins llq. (15). in discretiz,eci  form, (33) 14Toulcl
bccmnc (analogous to (18))
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(34)

3.1.6. ! ,OW SNR Approximation of the Al,]< Stuctuw
As in Section 3.1.4, onr can appr{)ximate the ~ero order modified IRscl function in
(32) by the first two terms in its power series. When this is done, then using (31) it is
straightforward to show that analo~ous  to (21) onc obtains

(35)

Ul~fortunatcly,  (35) does not lcnc] itself 10 an easy interpretation in terms of an

duc 10 drift is within the initial baseband frequency uncertainty interval), then over
the observation interval the sin I// ~~ term involving i] in (35) is much slower. .
varying than the sin x/x term involving 1; and 10 a first order approximation the
forlner ca~~ be treated as a constant with rcuqmct  to the iimc duration of the latter. As
such, the’ ill~]>lel~~c~l~tatiol~s  of l:ig. 6a, b arc still appropriate for the low SNR
approximation to the’ AI R in the presmcc  of linear frequency drift. Also invoking
the Gaussian approximation to the statistics of (35), lhcm to a first order
ap]~roximation, the cietcction performance is still given by (28) and (29).

3.1,7. ]mproved Simpl_e  l~eceiver Structures for Signals with l~oLllldc’d_l~reqLl~llcy
])Sift
While the s(~llare-alld-illtegrate receivers of l:ig, 6 have the advantage that their
simple structure and performance> arc> approximately invariant to the prcscmcc of
frequency drift, as previously mentioned the’y pay a large penalty in performance
whcm compared to the true optimum Al ,R SChmnCIS.6  in an effort to improve
Lipon this situation, we shall sugges[ a modification of the simple  square-and-

6Wllilc  it is true’ that tlw performances Of tl~c~ op[imum Al .1< and M 1.1{ structures derived in Sect.

3.1.1 (b), (c) and illustrate in }:i~s.  2?, 3 \vi]l dc~ra(ic>  in the  prwmlcc  of cirif[ approaching that  0(

the simp]c  rmcivers  of l:ig, 6, this will IXI less ttuc for the optimum AI ,1< and M 1,1< struc[urcs

clcrivd  in tl]c prcsmcc  of drift as dcscri[>ccl by the cfccisiOn statistics in Sect. 3.1.6.



inlc$,ratc  receiver of ]~ig. 6b by cxploitinc  111(’  faCt that, ill the caw of illlercst  here,

(~1/2)’f<<}  J/2, i.e., the drift over the observation interval is only a small fraction of

the total initial frcqumcy  uncertainty band. in particular, typical spacecraft
oscillators  have a maximum one-sided drift rate oll the order of 25 I lZ in 1000
seconds and thus for an observation time of ‘f’ =- 1000 SC!C, (/1/2)7’ == 25 I lx which is
quite small comparecl to the assumed bascbanct  frequency uncertainty interval of
B/2 = 1000117,

C’onsicter  dividing the total baseband frequency uncertainty bald 1;/2 1 lzj into
K subbands of width (~1/2)’l’  117 each, i.e., K = (fl/2)/(~1/2)’l’  which for our ongoing
cMmplcI yields K z 1000/25 = 40. A motivation for doing this can bc obtained by
examining the behavior of the Al X structure of l~ig. 2 when the input frequency
drifts and is discusscci  following the CInd  of this para~raph. The received signal in
cacll of tllmc subbands7  is sqtlarc’d-allcl-  il~tcgrated in the manner of l:ig. 6b. T h e
maximum of these sqLlarc’d-alld-i  lltc8ratC’cl values (mergies)  is selected and
compareci to a threshold set by the recluircmcmt  on false’ alarm probability. A
receiver  il~~~>lc’l~~c~~tatiol~  based on M channels of the type described abc)ve (SN l~ig.
9) will be rcfmrcci 10 herein as a s]~l~bfl~id  sqll(lri}l,f recrivrr as contrasted with a ~lill
b~?ld squnritl: rcccimr which would incc)rporate M channels of the type illustrated i~~
I:iS. 6b.

“J’hcI COnstructic)n  of the subbanc]  squaring receiver can be mc)tivatcd by
reexamining, (1IC basic build ins block of the’ Al J{ receiver in I:ig. 2, namely, the
envelope detector. in particular, rewriting thr squared cmvelopc of the ijth cieteetor
as

where p(l) is a unit amplitucie  rectangular pLllscI  in the interval () < t <1’ shows that
f;(~i,, ) can bc’ interprctwt as the mcrgy ccmponcmt of the winctowcd  signal r(f)p(l)
at frequency ~,,,, c)ver an cffectivc  banclwicllh of 1 /’f’ 1 lz. (the result of frequcmcy
domain spreading ducI  to the finite duration of tl~c time window p(t).) 3’hLls,  each
cmvelopc dctec{or  in l~ig. 2 measures the energy in a narrow frequency band within
the uncertainty band of interest. Since the center frcqucwcies  of adjacent envelop
detector-s arc separated by 1 /7’ 1 Iz,, it is clear that the ith detector in l~ig. 2 mnsisfs  of

71;r0m an ill)~>lclll(’lltatic)ll point of view, tl)c rwcivccl  sisnal  is pass(d tllr0u811  a I)ank of disjoint
subbanct  tmnclpass  filtm-s each  of which can altcrna[ely bc ilnp]cmmtcd  as an 1-Q ctcvmctulation

with tl~c carrier frcclumcy at thcl ccntcr of tlm subband follc)ivcci  by a t)ascbanct  rcctan~ular filter of

w i d t h  (jl/2)7’  = 11/2K.



a bal~k of narrowbanci  filters il~at complcte]y cover the frequency uncertainty region
associatcci  with the ith sir, na]. l:or a square winciow function, the frequency
r(’sponsc  of each filter is of the form sin x/x, implying orthogonal outputs when
tl~c center frc’quencies are scparatwi by 1 /1’ I IY.. ‘1’bus, the filter bank generates  the
maximum number  of indcpcndm 1 samples, )17’, consistent with a bandwidth 11117,
and integration time ‘f’ sec.

‘ll~c’ h41 X algorithm selects the lar~est enm~y component within the ith filter
bank as the test statistic ~ as illustrated in ljig. 3. lbr the AI .1< algorithm, however,
the energy components collcctui  at each frequency arc fur(hm procc!sseci by taking
the sq~lare  root, applying a scale factor , and computing the Bessel function 10(x) of
the rrsulting  scaled cnvclopc. l~ollowing this, the results are summed to obtain the
test statistic ~. Although the h41 .1< structure is suboptimum,  its performance is only
slightly worse’ than that of the Al ,1< algorithln for this application. l;oth the Al ,1<
and h41,R structures arc preciicatcci on the assumption that the signal remains
constant in frcqumcy, which further implies that it remains within the passbanci  of
th(! same filter (channc’1)  throu~h  the entire observation interval, msurin~  the
greatest }mssible SN1< at the output of tl~at filter. IIquivalcmtly, in terms of a
cllallgillg input frcqumlcy, a maximum si~na] drift of less than 1 /7’ 1 lz, over the 7’-
scc observation is implied.

If the’ maximum frc’quency drift excemis 1 /’/’ 1 lz during the ot>scrvation, thm
the signal moves from one filter to the next, possibly spanning a large number of
filters (channels) over the observation interval. In that case, no single filter contains
all of tile signal energy, which is now distributed among many adjacent filters.
1 lowever,  if the starting frequency and maximum drift rate were known, then the
si~nal  energy could still be rccovcrcd  by combining (summinfj  the outputs of all

fillers spanned by the’ signal. Since the ac(ual starting frequency is not known, this
suggests using a filtc’r bank with filter bandwidths large enoLlg}~ to accommodate the
drifting signal. “1’hLM,  analogc)us  to the Al ,1< approach, we partition the uncertainty
rc’gion  into K = /17”/  N (N an integer chosen  in accorciancc  wit}~ thr maximum drift
rate) filters each of band wi(ith N /’1’ 11~,,  instead of 10’ filters of bandwidth 1 /7’ 1 lz, as
was do1lc’ fO1 the diSCrC)tC version of th(’ Al,]< With no frC’qLIC1lCy  C~rift. ~’h(’  OLltpLltS

of each subband filter arc) squareci and integrated as shown in l~ig.  9. Next, if we were
to parallel the cicwclopmcnt of thc~ Al R structure, we would take the square root of
the outputs of each of these larger bandwidth (subband) filters, scalcI  them, compute’
the l~essc] function lo(x) of the resulting scaled cmvelopes  and sum to obtain the test
statistic. We shall consider instead scl~~cting  the largest subband filter output within
the ith detector as the test statistic for the corresponding ith hypothesis, analogous
to what is done in the Ml.]< structure.

l~or the system parameters of interest the subband  squaring receiver ac}~ievcs
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[a ciramalic pcrformCancc inlprov~’mcnt  over the full band squaril~g  receiver
primarily clue 10 tllc reducmi noiw power ill ihc subbancls  (each has only 1 /K of the
total noise power) cicgradcd somewhat by occasional mwrs  in selecting the correct
Subbanci. Assuming a value of K = 40, an illustration of this performance
improvement is superinlpcxmd 011 the fllll band sqLlaring  receivrr  rmults  in l;ig. 7.
“1’11(’ curve labelcci K = 1 near the subbanci performance curves represents the
pcr[ormancc  of a full-band receiver with uncmtainly bandwidth B = 50117, and is
used to illustrate lIIc small amoul~t  of dcgraclaliml  due (0 choosing among 40
subbancis,  Note that the additional dcgra(iation caused by choosing between five
hypotheses instead of two is negligibly small for this case. ‘1’he subband performance
curves were compulcci using (4 O) and (43) (to bcI (icrivcd short] y), and the two-
hy~mthcsis  case (M = 2) was vmifieci using a computer simLllation.  comparing
these resLllts  with those obtained for the full band receiver, we observe a dramatic
improvmncmt in performance which is on the or(dcr of 7 dl~. ‘J’hc analysis L]sed 10
obtain these rcsul(s assLlmm that the tones start at the boundary bctwcwn sLlbt>ancls
and drift (at no ~reater rate than their maximum rate) to the boLlnciary of the
adjacent subbanci in either the posilivc  or negative ciircction from their starting
points) As sLlch,  thc~ rcccivcci  tone remains Within a given sLlbt>aIlci over the entire
observation interval. “1’he details of the analysis are as follows.

I’hc detection performance of thr subband  squaring receiver is obtained using
a (;aussian  approximation analogous to that employed for the full band squaring
receiver. in particular, since each of the K subbanci  processors in l~ig.  9 is
in~pl(!mcntcci  as in l~ig, 6b but with low pass rectangular filtms that are 1 /Kth the

bandwidth, then the processor outpLlls  ~, $ C; / K -{ Z,k, k =- 1,2,.. .,K can be modeled

as inciepmcicnt  Gaussian random variables with means  and variances of Zl~ as in

(25) b~lt Witl] G rq~lacd by G/K. Assuming first the two hypothesis case, the
probability of false alarm, fj,~, is equal to the probability that any of the K sLlbbanci
procesmr  OLltpLltS  CXCCWiS the threshold  uncicr  /f.. llquivalently,  /;,.A is eqLlal to one

min Lls the probability that none of the sLlbbanci  processor outputs cxceecl the

tllrcsholci under  //0 which is the same as one minus  the probabil ity that the

m a x i m u m  o f  the sLlbbancl processor oLltpLlts  ciocs not exceed  the tllrcsholci under
//0 . ‘1’l]us,  analogous to (26),

I;,* =- 1- PI’{~  < yp]o] =- 1-

L 1.1-1 u’f~ ?“  -7 , ,
‘

2“ J2 d,,:
(36)

where y’” = y - G/K and from the above ciiscLlssion



100”/’1’ G2:-//0 No ‘K

[ IJ

1’7’ G
~ z I,,. ‘ -N -K

o

(37)

(38)

NolcI that (38) differs in form from (27) since here a correc( detc’ction  occurs if any of
the sul)bancl processor oLltputs cxccds the threshold, not necessarily only the one

“/) =1- [] - ,;,A](’-’K’K

[ I1
x 1- - CTfc --- ~~

2
c;/K (C,l.fc-(p.p - ( P  IjA)’’K])--&”  )}]

2P TIN(, + G/K

(40)
IJor K : 1, i.e., the full bancl  squaring reccivcr, (40) reduces to (29) as ii shoulcl.

}Jc)r tl~c M hypothesis case, the probability of false’ alarm, I;,A, is given by

{ I  ,,-[l-;,clfc[;z:~;-]j-’)  (41)f;,A=’l - 1’1 \, Y2,..., Y,., syl)o

Wl”lwc’  2 and Ozl,, are as defined in (37). Similar tc) (27), the probability of1/0 0



2?0

(4?)

‘[’- icl’rcyr(’f-’)’K-’”y

‘[’” :“c’”fcyrf-’)+K-’(iy
LL _lJ

};or K = 1, i.e., the full  band squaring receiver, (43) rcd LIccs to (28a) as it should.
A further improvement in performance can be obtainecl by designing a

receiver that attempts to remove the linear drift component of the rccc!ived  signal,
thLls enabling one 10 si gnificanlly rcducc tllc siz,c of the frequency subbancis.  This
process, which shall bc referred to as dri~l t~lflfchitl~  constitutes replacing the
correlating signals in IFig. 9 with onc~s  (Ilat also contain test valuc~s  of the linear drif~
distributed over the range corresponding to its maximum positive and negative
values. l’hc resulting dri~l-lllfl[rhi)lg  squfrri}l~ rrcciver ill L~stratd  in }:ig.  10 can now bcI
motivated  from the Al ,1< with frequency drift (see I Fig. 8) just as the subbancl

squaring rcceivcr  was motivated by the structure of the Al ,1< without drift (see l~ig.
?). ‘1’hc key idea here is to select channel  bandwidths, i.e., the value of K in the
inpLlt low pass rectangular filters, wide enough  to encompass the signal after a
linear drift component has been removed. ‘1’hLls,  the minimum channel bandwidth
is Llltilnatc’ly  detmninccl  by the rcsidufll quadratic and higher order terms in the
frcqumcy  trajectory. II] contrast to l;ig< 9, the subbanci  no longer  need include the

f requency var iat ion correspondi]lg  to the max imum linear  frequency drift over the

observation interval. “1’his  receiver  structure is quite similar to tile maximum-

Iikelihoocl  estimator of freqLlmcy  and frequency rate clcscribd  earlier  in [7].
“1’0 obtain the RO~ of l:ig. 10, wc proceed as follows. 1 ,etting ) cicmote the

number of test values of ~ per test value of j, then the false’ alarm and detection
probabilities are givcm by (36) and (38) respectively with K replaced by K). q’lw
molncnts  of the decision variables unclc~r the noise only and signal plLls noise
hypotheses arc still given by (37) and (39), rcspmtivcly,  keeping in mind, however,
that the val LIC>  of K to bc’ LISd in these equations is significantly larger than that
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l;) : 1- p - p](~J-’)/K)

[ {/

1
x 1- - Clfc  -

2
‘;/K  (clfc-’(2[l  - (1- /:..) ’ ’ K ’ ] ) -  +;;:;-))] ’4 4 )

_2PT/Nc)  -] <;/K

IJt)r ) z 1, (44) rcduccs 10 (40) as it should.
1 k>r the M h ypothcsis casr, the probability of false alarm is once again given

by (41) with K rcplaccd by ~] and the probability of detection is still given by (42).
lllilninatinx  111P  thrmhold bctwecm the two probabilitim  gives an 1<0~ analogous to
(43), namely,

‘[1- ic’fcyr(’f-’)+K””y
“K.i-l  m

J{}[J* ,
Cxp - Y2

1
1- ;, Crfc - ~;,x . . . . . [y.;;:?=)~  (45)

2PT/NO-I  G / K

‘[]” ic’”fcyr(h’”2)+ K’-2(’”
{[

?]: CI’fc-  ‘ 2 1- (1 -- f;.A)-df-”l)

1}

“1’hc performance of the rcceivcr in l~ig. 10 as described by (44) and (45) is
su]wrimposd  on the results of IJig. 7. Val Llcs of (K,.)) corrcspc)ncling to (500, 25),
(1 000, 50) and (2000, 1 00) were assumed 10 characlwim  ~llc performance of the drifl-
matching subband squaring receiver. lliffic-ultics  in computing the large number of
test statistics rcquireci for this structure prcvmtcvd verification by means of compulm
simulations. Note that ] is clct[!rminecl  from tl~cI maximuln total (positive and
negative) drift ti’f ’ , the maximLlm  total (positive and negative) frcqLlcmcy
uncertainty f;, and K by ./ =- 2K/h’//] wl~crc we have assumed that the subba!]ds  of

width Ii/K within the total clrift 1~1” overlap by 11/2K. comparing these results
with thcm obtained for the subband rcceivc~r  of l:ig. 9, we see anothc’r dramatic
improvcmmt  in performance. As before, pcvformancc for M = 5 (foL~r  si~na]s) is
only slightly worse than for M = 2 (the single’ tone case).
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